
The Quantum Mechanics of Data Pipelines

Pere Urbon-Bayes

Data Wrangler

pere.urbon @ { gmail.com, acm.org }

http://www.purbon.com

http://acm.org
http://www.purbon.com

Who am I

Pere Urbon-Bayes (Berliner since 2011)

Software Architect and Data Engineer

Passionate about Systems, Data and Teams

Free and Open Source Advocate and Contributor

Working on a Data Engineering book for everybody

Software Architect
and

Data Engineer
for Hire

Springer Nature in Berlin

Topics of Today

• Making data available across the company.

• From the warehouse to the era of real time.

• Approaches to make data available.

• Benefits and Challenges.

• The hardest problem, the human part.

Information systems, sharing
data between applications

since last century….
Making systems communicate

A totally random system
evolutionary tale

The Analyst
Emergence

The easiest system is the
isolated one

Acquiring or being acquired

The ever growing chaos of a
technology variety

Different schemas for the same
concepts

Making data available is a system integrations
problem.

The challenges
in connecting data

Dealing with failure, is hard

The ever growing performance
battle..

Loosely coupled systems,
bringing maintainability to data

Building a Shantytown,
 The Big Ball of Mud

– M. Conway

"organisations which design systems ... are
constrained to produce designs which are
copies of the communication structures of

these organisations."

From the warehouse to
the real time era Processing data at the speed of light

What is a data pipeline?

Data
Target

Data
Source Data pipeline

Because systems do not live in isolation anymore, they need to
incorporate and/or generate data for other components.

Working with batches The workers approach

Working in Batches

Batch processing is:

• The execution of a series of jobs/tasks

• In a computer, or group of computers.

• Without manual intervention.

A job is the single unit of work.

Working in Batches

Batches are a natural mapping from procedural and OO
programming paradigms.

Implementation follow up from traditional multithread
models.

An image uploaded using Sidekiq

class ProductImageUploader
 include Sidekiq::Worker

 def perform(image_id)
 s3_upload(data_for_image(image_id))
 end

 def self.upload(product, image_ids)
 image_ids.each do |image_id|
 perform_async(image_id)
 end
 end
end

Computing PI using spark.

Common best practices

• Make your jobs small and simple, to ensure
performance and maintainability.

• Make your jobs idempotent and transactional, to
ensure safety and residence.

• At less once, exactly once,….

• Embrace concurrency and asynchronous api’s to
bring utilisation to the top.

The pros and cons of
this approach

Building pipelines to
transport data Data plumbers since 1983

Working in streams

Stream processing is a computer paradigm that

• Provides a simplified parallel computation methodology.

• Given a stream of data, a series of (pipelined) operations
can be applied.

Streams power algorithmic trading, RFID’s, fraud detection,
monitoring, telecommunications and many more.

Working in streams

Related paradigms are:

• Data Flow: A program as data flowing between
operations.

• Event Stream Processing: Databases, Visualisation,
middleware and languages to build event based apps.

• Reactive Programming: Async programming paradigm
concerned with data streams and propagation of
change.

Data Flow
Programming

• Model programs as a DAG
graph of data flowing between
operations.

• Data flow trough databases,
brokers, streams…

• Operation types:

• Enrichment

• Drop/Throttle

• Transform

• Backpressure, buffers, reactive.

E

B C

G

A

D

F

Backpressure

• It describe the build-up of data
behind an I/O switch if the
buffers are full and incapable of
receiving any more data.

• The transmitting device halts
the sending of data packets
until the buffers have been
emptied and are once more
capable of storing information.

E

B C

G

A

D

F

Backpressure

• It describe the build-up of data
behind an I/O switch if the
buffers are full and incapable of
receiving any more data.

• The transmitting device halts
the sending of data packets
until the buffers have been
emptied and are once more
capable of storing information.

E

B C

G

A

D

F

Backpressure

• It describe the build-up of data
behind an I/O switch if the
buffers are full and incapable of
receiving any more data.

• The transmitting device halts
the sending of data packets
until the buffers have been
emptied and are once more
capable of storing information.

E

B C

G

A

D

F

Backpressure

• It describe the build-up of data
behind an I/O switch if the
buffers are full and incapable of
receiving any more data.

• The transmitting device halts
the sending of data packets
until the buffers have been
emptied and are once more
capable of storing information.

E

B C

G

A

D

F
Busy
Backpres

sure

Backpressure

• It describe the build-up of data
behind an I/O switch if the
buffers are full and incapable of
receiving any more data.

• The transmitting device halts
the sending of data packets
until the buffers have been
emptied and are once more
capable of storing information.

E

B C

G

A

D

F
Busy
Backpres

sure

Backpressure

• It describe the build-up of data
behind an I/O switch if the
buffers are full and incapable of
receiving any more data.

• The transmitting device halts
the sending of data packets
until the buffers have been
emptied and are once more
capable of storing information.

E

B C

G

A

D

F
Busy
Backpres

sure

Reactive Streaming

When one component is struggling to keep-up, the
system as a whole needs to respond in a sensible
way. It is unacceptable for the component under

stress to fail catastrophically or to drop messages in
an uncontrolled fashion. Since it can’t cope and it
can’t fail it should communicate the fact that it is

under stress to upstream components and so get
them to reduce the load.

http://www.reactive-streams.org/

http://www.reactivemanifesto.org/

A word count on reddit with Akka Streams.

A word count on reddit with Akka Streams.

A word count on reddit with Akka Streams.

Indexing into Solr
with Apache NiFi

Streaming projects

Challenges in data plumbing

• Systems growth is most commonly mapping internal
communication channels among the organisation.

• This introduces challenges on several areas:

• Handle failure.

• Keep the data processes low latency.

• Changes in communication and data.

• Data availability and governance.

The pros and cons of
this approach

Scaling Human Data
Communication Handling communication patterns

–Your data engineer next door

“Data pipelines emerge to automate the
communications structures of the organisation”

Is all about communication, right?

Accessing data in a more reliable way

Problems usually pop because of changes in:

• Data expectations: When inbound teams need to
change the internal data representation, volumes or
schemas unexpected results are expected.

• Communication channels: A software platform is all
about communication between components, also data
pipelines, if they are changed users should handle it.

The shared schema registry

A centralised schema registry is a service where all organisation wide
schemas are made accessible, facilitating access across teams, in detail
benefits are:

• Simplify organisational data management challenges.

• Build resilient data pipelines.

• Record schema evolution.

• Facilitate data discovery across teams.

• Stream cost efficient data platforms.

• Policy enforcements.

The shared schema registry

• Popular ways to achieve this is by storing schemas in
formats such as Avro, Protocol Buffers or Thirft, preferable
the first one.

• Curiously there exist many private implementations, the
first opensouce one is the kafka centric schema-registry
by Confluent INC.

• Consumer-Driven Contracts: Similar approach introduced
in 2006 by Ian Robinson at ThoughtWorks.

• Popular implementation: pact.io

http://pact.io

Domain Driven Design

Domain-driven design (DDD) is an approach to software
development for complex needs by connecting the
implementation to an evolving model.

One of the premises is the creative collaboration between
technical and domain experts to refine the model.

https://en.wikipedia.org/wiki/Domain-driven_design

References

• Pat Helland. Accountants don’t use erasers. https://
blogs.msdn.microsoft.com/pathelland/2007/06/14/
accountants-dont-use-erasers/

• Martin Kleppmann. Turning databases inside out. https://
www.confluent.io/blog/turning-the-database-inside-out-
with-apache-samza/

• Martin Kleppman. Designning Data Intensive
Applications. https://dataintensive.net/ .O’Reilly.

https://blogs.msdn.microsoft.com/pathelland/2007/06/14/accountants-dont-use-erasers/
https://www.confluent.io/blog/turning-the-database-inside-out-with-apache-samza/
https://dataintensive.net/

References

• Gregor Hohpe. Enterprise Integration Patterns.
http://www.enterpriseintegrationpatterns.com/

• Matt Welsh, et all. SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services.
http://www.sosp.org/2001/papers/welsh.pdf

http://www.enterpriseintegrationpatterns.com/
http://www.sosp.org/2001/papers/welsh.pdf

Thanks a lot, Questions?

The Quantum Mechanics of Data Pipelines

Pere Urbon-Bayes

Data Wrangler

pere.urbon @ { gmail.com, acm.org }

http://www.purbon.com

http://acm.org
http://www.purbon.com

