
UNDERSTANDING SOFTWARE DEV
USING EQUATIONS

jacques@nreality.com
@jacdevos

• Hard!

• Non-intuitive

• Misunderstood

• Seen as black-art done by amateurs

Software engineering is:

Typical problems
• Congestion and Dependencies

• Technical Debt

• Firefighting

How can math help us?

Socrates’ Meno

Clear thinking
rather than precise proofs

http://complexitylabs.io/

Why do systems become so complicated?

Understand complexity with
Metcalfe’s Law

! ! − #

$

10

1

2

34

5

! ! − #

$

66

1
2

3

4

5

6
7

8

9

10

11

12

Complexity is caused by:
quadratic increase in

connections

How do we reduce complexity?

Design reduces dependencies

4

44 3

15!1

2

3

4

5

6

7

8

9

10

11

12

Org structure
or

Code structure?

Summary:

But what about complexity
over TIME?

Big O Notation
https://apelbaum.wordpress.com/2011/05/05/big-o/

Go slow to go fast with
the right work algorithm

%&')

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

TI
M

E
+

R
IS

K
 T

O
 M

A
K

E
 C

H
A

N
G

E

FEATURES BUILT

CODE CHANGE COMPLEXITY
O(n) O(n2)

Clean Code gives
• Easy to read

• SOLID design

• Boy scout refactoring

• Self-testing

• TDD

)(!)

Messy code gives
• Manual regression testing

• Spaghetti dependencies

• Hart to understand

)(!$)

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

TI
M

E
+

R
IS

K
 T

O
 M

A
K

E
 C

H
A

N
G

E

FEATURES BUILT

CODE CHANGE COMPLEXITY
O(n) O(n2)

Your algorithm of work
determines order of time

complexity

In summary

We’re so busy! Why don’t we
get stuff done?

Credit: http://www.autoevolution.com/

We’re so busy! Why don’t we
get stuff done?

youtu.be/Suugn-p5C1M

Maximise efficiency with
Queueing Theory

				
Little’s Law

and

Kingman's Formula

Kingman’s Formula

,-./0'.	10&2	3&4. ∝
62&7&802&9!

#	 − 62&7&802&9!

0

5

10

15

20

25

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
V

E
R

A
G

E
 W

A
IT

 T
IM

E
 /

 C
Y

C
LE

 T
IM

E

UTILISATION OF OUR CAPACITY

HIGH UTILISATION SHOOTS UP WAIT TIME
Wait time Wrong intuition

Over-utilisation causes jams

,-./0'.	10&2	3&4. ∝
62&7&802&9!

#	 − 62&7&802&9!

Utilisation is hard to manage

Little’s law

,-'	10&2 ≈
,-'	19/;	&!	</9'/.88

,-'	3/9='>?=2	

Reduce Work in Progress
to

reduce Utilisation
to

reduce Wait Time

“Queues are the root cause of the
majority of economic waste in

product development.”
Donald G. Reinertsen

In summary

@.>&A7.8

B9=/
=
D.2./8

B9=/
.
@.>&A7.8

D.2./

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0

20

40

60

80

100

120

140

50 100 150 200 250 300 350 400 450 500

FL
O

W
 R

A
TE

 (V
E

H
IC

LE
S

/H
O

U
R

)

S
P

E
E

D
 (K

IL
O

M
E

TE
R

/H
O

U
R

)

DENSITY (VEHICLES/KILOMETER)

OPTIMAL FLOW
Speed (Km/h) Flow (Vehicles/h)

UnstableStable

Speed decreases as
density increases.
This is not intuitive.

Optimum flow at
speed 60 and
density 250.

Neither MAXED!

Speed	=	(1	– Density	.	JamDens)	.	MaxSpeed

How does this apply to software?
• WXYZ = [\]]^. _]`abcd
• Velocity	=	Throughput	=	Flow (avg #	features	delivered	per	week)
• WIP	=	Density	 (avg #	features	started	but	not	completed)

• xdyX]	cbz]	 =
{

|}~~�
(avg time	it	takes	to	complete	a	feature)

• ÄℎYÇÉℎ\Çc =
ÑÖÜ

áàâä~	ãåç~
(aka	Little’s	Law)

@.79A&2ê =
,-'	ë.02=/.8	&!	?/9'/.88

,-'	2&4.	29	A94?7.2.	0	ë.02=/.

Improve continuously with

, = <./2

Continuous compound interest

http://jamesclear.com/marginal-gains

• r = 1% per week (improvement rate)

• t = 104 weeks/2 years (time in weeks)

This gives us

• 294% improvement over 2 years!

í4?/9-.4.!2 = ./2

• r = -1% per week (decay rate)
• t = 104 weeks/2 years (time in weeks)

This gives us
• 34% of original
• Degraded 66% over 2 years!

Is this how technical debt behaves?

./2

In summary

Simplify by reducing dependencies

You need quality to keep going fast

Do less at once to go fast

Continuous improvement compounds

Other equations
• Entropy

• Bayesian Inference

• The software engineering equation

• Yours?

jacques@nreality.com
@jacdevos

DISCUSS.

