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• Hard!

• Non-intuitive

• Misunderstood

• Seen as black-art done by amateurs

Software engineering is:



Typical problems
• Congestion and Dependencies

• Technical Debt 

• Firefighting



How can math help us?



Socrates’ Meno



Clear thinking
rather than precise proofs



http://complexitylabs.io/

Why do systems become so complicated?



Understand complexity with
Metcalfe’s Law
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Complexity is caused by:
quadratic increase in 

connections



How do we reduce complexity?



Design reduces dependencies
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Org structure 
or 

Code structure? 



Summary: 



But what about complexity 
over TIME?



Big O Notation
https://apelbaum.wordpress.com/2011/05/05/big-o/



Go slow to go fast with
the right work algorithm
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Clean Code gives
• Easy to read

• SOLID design

• Boy scout refactoring

• Self-testing

• TDD
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Messy code gives
• Manual regression testing

• Spaghetti dependencies

• Hart to understand
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Your algorithm of work 
determines order of time 

complexity 



In summary



We’re so busy! Why don’t we 
get stuff done?



Credit: http://www.autoevolution.com/

We’re so busy! Why don’t we 
get stuff done?



youtu.be/Suugn-p5C1M



Maximise efficiency with 
Queueing Theory

				
Little’s Law

and

Kingman's Formula



Kingman’s Formula
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Over-utilisation causes jams
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Utilisation is hard to manage



Little’s law
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Reduce Work in Progress 
to

reduce Utilisation
to

reduce Wait Time



“Queues are the root cause of the 
majority of economic waste in 

product development.”
Donald G. Reinertsen





In summary
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DENSITY (VEHICLES/KILOMETER)

OPTIMAL FLOW
Speed (Km/h) Flow (Vehicles/h)

UnstableStable

Speed decreases as 
density increases.
This is not intuitive.

Optimum flow at 
speed 60 and 
density 250.

Neither MAXED!



Speed	=	(1	– Density	.	JamDens)	.	MaxSpeed





How does this apply to software?
• WXYZ = [\]]^. _]`abcd
• Velocity	=	Throughput	=	Flow (avg #	features	delivered	per	week)
• WIP	=	Density	 (avg #	features	started	but	not	completed)

• xdyX]	cbz]	 =
{

|}~~�
(avg time	it	takes	to	complete	a	feature)

• ÄℎYÇÉℎ\Çc =
ÑÖÜ

áàâä~	ãåç~
(aka	Little’s	Law)

@.79A&2ê =
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Improve continuously with

, = <./2



Continuous compound interest



http://jamesclear.com/marginal-gains



• r = 1% per week (improvement rate)

• t = 104 weeks/2 years (time in weeks)

This gives us

• 294% improvement over 2 years!

í4?/9-.4.!2 = ./2



• r = -1% per week (decay rate)
• t = 104 weeks/2 years (time in weeks)

This gives us
• 34% of original 
• Degraded 66% over 2 years!

Is this how technical debt behaves?

./2



In summary



Simplify by reducing dependencies

You need quality to keep going fast

Do less at once to go fast

Continuous improvement compounds



Other equations
• Entropy

• Bayesian Inference

• The software engineering equation

• Yours?
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DISCUSS.


