Demystifying Deep Learning
with Elixir

Marcel Tilly

Why Elixir? Why Deep Learning

* it is cool * itis cool
* Move out my comfort zone * the “one ring” to rule
e It is functional y = f x, but fun everything

* Demystify the magic

A brief history on Elixir (& Erlang)

* Elixir is a dialect based on Erlang

* Erlang was developed at Ericsson in 1986
* Designed for telephony systems
* Proprietary until 1998

* Growing popularity: Amazon (SimpleDB), Call of
Duty, GitHub, Goldman Sachs, Heroku,
WhatsApp

* What is it good for:
* Concurrency
* Fault-tolerance
e Soft real-time

* Created by Jose Valim (Plataformatec), 2012

..and what is Elixir?

Compiles to Erlang bytecode

Can call to any Erlang lib

Friendlier syntax (inspired by Ruby)

Modern tool chain (Mix)

“No side effects” - Everythingis a function
Variables can't be reassigned (immutability)
Lots of recursion

REPL

https://elixir-lang.org/

modify kpnode(Zt, {}, Low

modify node(St, nil, Actions, Que
modify kpnode(Bt, NodeTuple, LowerBou
{ok, lists:reverse (ResultNode, bo
size (NodeTuple), (1)), ©
modify kpnode(St, NodeTuple, LowerB
[{ , FirstActionKey, }|]=2a
= find first gteq(St, NodeTuple
case N == size (NodeTuple) of
true ->
$ perform remaining actions o
{ , PointerInfo} = element(si
{ok, ChildKPs, eryOutput?2,
modify node (5C, interl

false ->

m

size (NodeTuple) - 1,
{ok, NodelList, er tr
{NodeKRey, PointerInfo} =
SplitF = fun({ Act T

not less(Z=t,
end,
LessEqgQueries, reater

esultNode2 = lists:reverse (C
1 nd, N - 1, Re

modify kpnode (St2, Node

aple,

Elixir in action...

* Value Types: Integers, Floats, Atoms (Symbols), Ranges
* Collections: Tuples, Linked Lists, Binaries, Maps

* System Types: PIDs, Ports

* Functions

e Pattern Matching

* Guards

* The “magic” |>

Whatis Deep Learning?

[cat, 0.98]
[dog, 0.11]

“In deep learning, the algorithms we use now are versions of
the algorithms we were developing in the 1980s, the 1990s.”
- Geoffrey Hinton

Let’s start here:

Dendrite

Axon Terminal

Node of
Ranvier

Schwann cell

Myelin sheath
Nucleus

Structure of a typical neuron

(source: Wikipedia)

Activation
function

f

Output

FOQ w w0

Why a functional programming language?

L0

wo

*@® synapse

axon from a neuron

WoLo

cell body
w1

Zwiazi +b

Wo 9

f

f (Z w;T; + b)

o
output axon

activation
function

= sigmoid
|| ===thanh
= RelLU
== softplus

Example: Trainings Planning

B S A GRS OR

i 0 H HHoH B

Towards a simple Neural Network

& |
o N
i BEIP <

Simple Neural Network

BN

1
0

“fully connected” directed graph of neurons

NS

age o O

i.V\Puf:/ou(: Pu(: neurown

hiddewn neuron

s
o
o —p nformation flow

® wmarried

income @ o 0o

e single

\
o LAPEN
emFLovmev\b o —m—y g ———b

Hidden Hidden
Lovjer 1 Laujer pd

FHneurons 3 4- 3 2

#Heconnectktions 3x4 4-%3 3x2

IV\FuE Laver Ou.bFu.E Laje:r

Motivation: Trainings Planning (incl. Weather)

~ne

E S b ot E

T T T
A A

B .

0
1

H

Recurrent Neural Network for my Training

Weather Non-linear Merge

Elixir processes

* All Elixir code runs inside lightweight threads of execution (called
processes) that are isolated and exchange information via messages

* Due to their lightweight nature, it is not uncommon to have hundreds
of thousands of processes running concurrently in the same machine.

* |solation allows processes to be garbage collected independently,
reducing system-wide pauses, and using all machine resources as
efficiently as possible (vertical scaling).

* Processes are also able to communicate with other processes running
on different machines in the same network. This provides the
foundation for distribution, allowing developers to coordinate work
across multiple nodes (horizontal scaling).

Wrap-up

* Motivation for using Elixir
* Deep Learning is no magic

BUT
Deep Learning is risky — Data is always biased!

Thanks!

< e
Q ‘
8,
s
gh ot
.

caican I P m;,}y“ f
PP, o ,L.l -
¢ &:;U&,-:. o ye 4

Y A
—-V' 2 0
o . y y

AN 4

[¢
B

marcel.tilly@microsoft.com

